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We present new exact results for a one-dimensional asymmetric disordered hop- 
ping model. The lattice is taken infinite from the start and we do not resort to 
the periodization scheme used by Derrida. An explicit resummation allows for 
the calculation of the velocity V and the diffusion constant D (which are found 
to coincide with those given by Derrida) and for demonstrating that V is indeed 
a self-averaging quantity; the same property is established for D in the limiting 
case of a directed walk. 
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T h e  p u r p o s e  o f  t h i s  p a p e r  is to  p r e s e n t  n e w  e x a c t  r e su l t s  for  t he  d y n a m i c s  

o f  a p a r t i c l e  o n  a n  in f in i t e  d i s o r d e r e d  la t t i ce ,  g o v e r n e d  b y  t he  f o l l o w i n g  

m a s t e r  e q u a t i o n :  

d p . / d t = W . . ,  l P .  l ( t ) + W . . . + i p n + l ( t ) - ( W . + L . + W , ,  ~ : ) p . ( t )  (1)  
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giving the probability pn(t) for the particle to be at site labeled n at time 
t. The hopping rates Wn,n' are positive random quantities possessing boun- 
ded inverse moments and the pairs (Wn, n+l, Wn+l,n) are assumed to be 
independent from one link to the other. In addition, they are taken as 
asymmetric (Wn,, , r  Wn,,) as a consequence of a local or external bias 
field; for definiteness, we shall assume below that the average over disorder 
of the quantity log(Wn,~ + ~/W,  + 1,~) is negative; the motion to the right is 
thus favored as compared to the opposite direction. The main two results 
of this paper are the following. 

(i) For  a given infinite sample, the velocity V is found to be equal 
with probability one to the result derived by Derrida (') for a periodized 
lattice in the limit of infinite period. Thus, V displays no sample-to-sample 
fluctuations, i.e., is a self-averaging quantity. 

(ii) The disorder-averaged diffusion constant D is also found to 
coincide with the result of ref. 1. In addition, we have shown in the limiting 
case of a directed walk that D also is self-averaging. This latter result is 
likely to be true in the general case. 

The problem (1) has been solved by Derrida ~ in the case of a 
periodized sample; he there defines a (large) cell containing N sites with 2N 
random hopping rates, which is repeated at infinity and thus generates an 
infinite lattice (W~+ u,m + N = Wn,m). Derrida is able to calculate the velocity 
and diffusion constant for such a periodic sample; taking eventually the 
limit N ~ 0% he finds that these quantities no longer fluctuate. This charac- 
terizes a dynamical regime valid once the particle has covered a distance at 
least equal to one cell (this point is best realized by noting that, for any 
given N, both V and D depend on all the W's defined within such a cell). 
However, since the particle, in the course of its motion, periodically 
encounters the same sampling for the W's, the question arises whether this 
limiting procedure actually yields the proper transport coefficients for a 
lattice taken infinite from the start (that is, whether the limits N--* +oe 
and t ~ +oe do commute(I)). In a disordered system, this should not be 
considered as a trivial irrelevance of boundary conditions; indeed, one 
might think that since the periodized sample is in some sense "semidisor- 
dered," fluctuations in the true infinite disordered lattice could be in some 
way underestimated. Basically, the true question at hand here is that of 
sample-to-sample fluctuations. To the best of our understanding, even 
mathematical works on this subject do not settle this question. (2) 
Moreover, since in the limiting procedure N ~ + o0 the position of the par- 
ticle must simultaneously be pushe d at infinity, the physical content of the 
Derrida regime, when applied to an infinite lattice, needs some clarification. 
These questions were indeed the motivations of the present work. 

For  the sake of simplicity, we will here focus on the directed walk 
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problem and sketch the derivation in this case. Various generalizations and 
detailed proofs will be given in a forthcoming paper. For the directed walk, 
the particle can only move to the right as a consequence of a very strong 
bias. Then the master equation simplifies (W.--  W~+ 1,.): 

dp./dt= -W.pn( t )+  W. lpn_~(t) (2) 

Throughout this paper, two kinds of averages have to be taken in due 
time; in the following, overbarring represents an average with respect to the 
probabilities p . ,  whereas brackets stand for an average on the disordered 
hopping rates W's, i.e., an average on all the configurations. Thus we set 

x m ( t )  = ~ nmp.(t) (3) 
n =  --0(3 

#q = ( W q) (4) 

The moments/% are assumed to be bounded for q < 0; this physically 
means that there is no broken link. It is well known that only the negative 
(q <0 )  moments are relevant for the dynamics at large times. We also 
define the Laplace transforms 

p.(z) = pn(t) e -zt dt = L[p.(t)] (5) 

Since each p.(t) is a positive bounded quantity, pn(z) is analytic 
everywhere in the right half-plane Re z > 0. In addition, we set 

Xm(Z)=L[xm(t)] (6) 

With the initial condition p.(t = O) = 6.,.o, the master equation can be 
transformed into 

-W.p.(z)+ wo_ p._i(z) (7) 

and has the unique solution 

po(z)= 1/(z+ W0) ,  p.>o(z)=po(z) f i  Wj_l/(z+ Wj) (8) 
j ~ l  

whereas p .<o(Z)= 0, since the particle has no possibility to move to the left 
of its starting point. The formal expression for xm(z) can thus be written as 

1:I xm(z)= (nm/W.) u/Z) (9) 
n = 0  j = O  

822/55/1-2-30 
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where we have defined (Z=z# 1) 

uj(Z)=(I + Z/Wj#_,) 1 (j>~O) (10) 

We now use the master equation in order to obtain convenient expres- 
sions for xl(z) and Xz(Z); simple algebraic manipulations taking Eq. (7) 
into account show that 

x , ( z ) = z - l S ( Z ,  r = 1), x 2 ( z ) = x , ( z ) +  (2tz){[~1or s(z, r (11) 

where the function S(Z, ~) is defined by 

+oo 

S(Z, ~)= Z ~ " - '  f l  uj(Z) (12) 
n = O  j = 0  

We aim at finding the large-time behavior of xm(t); unfortunately, the 
series (12) is hopelessly useless as it stands. The clue for progressing 
towards this aim is in fact the possibility of resumming this last series 
through a procedure which we now briefly sketch. For each uj we write 

uj(Z) = 1/(Z + 1 + Z,~j) (13) 

where 2j = - 1  + 1/#_ l Wj is a random number with zero mean; we now 
express uj as the geometrical series 

+oo 

uj(Z) = (1 + Z ) - '  ~ [-Z2j/(1 + Z ) ] "  (14) 
n = O  

Then, by using this latter form in (12) and gathering terms involving the 
same 2j, one obtains new geometrical series which can be readily summed 
up. Finally, S(Z, ~) turns out to have the convenient expansion 

s ( z , ~ ) = ( l - ~ + z )  -1 l - Z  F, r  -~ 
n = O  

-[-12 E ~n-l(l Jc-Z)-(n+l) ~n~m -~ "'" ( 1 5 )  

n = 0  r n = O  

In this last equation, the dots denote terms which are at least cubic in 
the 2's and therefore involve moments #_q with q > 2. The basic idea 
underlying the above resummation is to move the center for an expansion 
of Xm(Z) from z = 0 (which contains all the information on the large-time 
regime but is a strong singularity) to a finite point on the negative axis 
(z = - # _ ~  i.e., Z =  - 1 )  which is less singular and contains the same infor- 
mation since transients have decayed and are invisible in the mean for 
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t >~ ~ 1 ; the choice of this point for the expansion is motivated by the fact 
that the second term in the brackets of Eq. (15) has a vanishing disorder- 
average value (although it can have a very large fluctuation; see below). 
Note that all the 2's vanish identically in the ordered case. The expres- 
sion (15) will play a central role by allowing for an easy analysis of the 
asymptotic dynamics. As will be detailed in a forthcoming paper, the same 
procedure allows us to deal with the general case [Eq. (1)] provided that 
one makes use of the auxiliary quantities Gf(z) first introduced in ref. 3 
(see also refs. 4 and 5), which are recursively constructed for a given sample 

With the help of Eqs. (15) and (11), we readily get (in the directed 
case) for a given sample 

x l ( z )=~- l z -2+  ... (16) 

where the first subdominant term has a zero mean and a mean square-root 
deviation diverging like z 3/2 at small z. This implies that, for times large 
enough and for any given configuration of the W's, one has 

x(t)~ Vt, V= 1//~ , (17) 

This last equation displays two results, first, a finite velocity exists 
which coincides with the velocity found by Derrida, and, second, V does 
not depend on the given sample. In other words, a drift regime does exist 
at large times and is characterized by a nonfluctuating velocity. This last 
point can also be seen by calculating (x(ti 2) as a convolution integral 
(anyway required for the calculation of the mean-square deviation of the 
coordinate; see below) and by substracting 1~2~t2; it can be seen that the 
relative difference is ~ t -  1/2. 

In the general case [Eq.(1)], the same conclusions hold, formula (17) 
being replaced by 

V~. (1/Wn+l,n)) 1 (I - (Wn, n+l/Wn+l,n}) (18) 

when (Wn, n+l] W , + , , n ) <  1 (otherwise V=0).  
It is obvious, on physical grounds, that the waiting time for entering 

the regime described by Eq. (17) is at least equal to W~ 1, where W< 
denotes the smallest hopping rate associated with a given configuration. 
This time is thus a strongly fluctuating quantity from one sample to 
another. A best estimate is provided by considering the first subdominant 
term for xl(z) [arising from the second term in the brackets of expres- 
sion (15)-] which converges in distribution (for any Z, Re Z > 0 )  toward a 
law with a mean square root deviation ~Z-1 /2  in the limit Z--+ 0. This 
implies that the first correction to x(t) has a distribution over samples with 
zero mean and a standard deviation growing like t 1/2 at large times. 



466 Aslangul et  aL 

On the other hand, it is easy to find the first correction to the average 
position 

( x ( t )  ) ~ V(t + to) (19) 

where to is the time scale after which the strict drift regime is reached, on 
the average. In the directed case, one gets from (15) 

to = ( # - 2 -  ~ -  ~)/~-, (20) 

This is a satisfactory result: the higher the disorder, the larger the time 
for entering the self-averaging drift regime (for an ordered lattice, this 
regime does exist at any time t ~> 0 and, on the other hand, it is well known 
that strong disorder, corresponding to diverging first moments, outside the 
class here considered, can lead to anomalous behaviors). It will appear 
below that the distance do = Vto=(]A_2--ll21)/].121 can be viewed as a 
disorder-induced "dispersion length." 

In the general case, making use of the G f ,  t o is found to be 

to = (l/V)(1 + < W.,,,+ 1/Wn+ 1,n ) ) / ( l  - -  < mn, n+ 1/Wn+ 1,n ) )  

x [ V Z ( E I / G + ( O ) ]  2)  - 13 (21) 

with 

( [1 /G+(0) ]  2 ) = El - ((Wn, n+l/Wn+l,n)2)] -1 

x E ( 1 / W ] + L n > + ( 2 / V ) ( W n n +  2 , ~ / W . + ~ , . > ]  

This expression holds provided ((Wn, n+l/Wn+l,n)2)<l. If one would 
allow ( W . . . + ~ / W . + I , n )  < 1 < ( (W. , .+~/Wn+l ,n)2) ,  the characteristic 
time to would diverge while the asymptotic velocity would still be non-zero. 

The calculation of the diffusion constant is clearly much harder for a 
given sample than that of the velocity. In the general case, we were only 
able to obtain its average over disorder. This is still quite involved, since 
x2(z) is fairly complicated and since ( x ( t )  2) implies the convolution 
x~ �9 x~. As expected, kinematical terms (,,-,t 2) cancel each other and one 
finally gets 

( A  1 x2(t)  ) = (x2 ( / )  --  (x(t)) z ) = 2Ot + O(t x/2) (22) 

where D is the diffusion coefficient averaged over disorder. The t ~/2 correc- 
tion has a pure (disorder-induced) statistical origin and, in the directed 
case, arises from modified Bessel functions. In this latter case, D has the 
expression 

D = (1/2/~_~)E1 + (.u_2-/~2_ 1)/u2_ a ] =/~_2/2~u3_ a (23) 
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The first form of D displays the fact that, due to disorder, an addi- 
tional spreading occurs which is revealed by the external bias, a result 
already found by Derrida. This additional spreading is related to the fact 
that, when the particle finds a small W, it becomes delayed as compared to 
the self-averaging drift motion induced by the bias field. 

In the general case, one gets 

D = ( V/2 )[  (1 -Jr- ( Wn, n + l / W n  + l ,n)  )/(1 -- ( mn, n + l / W n  + i ,n) ) -[- Vto] (24) 

One recognizes, as in (23), besides the first term expected from the 
fluctuation-dissipation theorem, a disorder-induced additional spreading 
which precisely involves the time scale to defined in (19). Using (21), one 
observes that the average over disorder of the single-particle diffusion 
constant (24) indeed coincides with Derrida's results for a periodized 
sample with N ~ + oe. 

Since this is a demonstration about configuration averages, one would 
like to establish whether the diffusion constant is also a self-averaging 
quantity. We have been only able to prove that fluctuations do vanish for 
the directed walk [Eq. (2)]; even in this case, we only found a very tedious 
demonstration which requires space, care, and patience and for these 
reasons we here merely sketch it (explicit calculations will be given else- 
where). 

In order to show that D does not fluctuate, we write, for a given 
sampling of the W's, 

A l x 2 ( t ) = 2 D ( { W } )  t +  .-. (25) 

where D({W}) is the diffusion coefficient for this sample having the 
average value D given in Eq. (23). We now form the combination 

( Z ] 2 X 2 ( t ) )  ---- ( [ x Z ( t ) - - ( x ( t ) ) 2 ]  2 ) - -  ( x 2 ( t )  - ( x ( t ) ) 2 )  2 (26) 

The second term in this last equation is known to behave as 
4(D({ W})) 2 t 2 at large times [see Eq. (22)]; therefore, if it can be shown 
that the first one has the same time-dependence with the same  coefficient, 
then one may conclude that 

( [D({ W})] z) = (D({ W})) 2 (27) 

which exhibits the fact that D({ W}) is indeed a nonrandom quantity and, 
as such, devoid of any fluctuation. 

The explicit calculation of the first term in Eq. (26) is extremely 
tedious. Every quantity is represented by its Laplace transform, then 
averages over the disorder are taken. Numerous multiple inverse Laplace 
integrals [-due to the nonlinearities present in expression (26)] then have to 
be calculated and analyzed in the vicinity of z = 0. Nevertheless, although 
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very lengthy, the calculation does not give rise to serious difficulties. The 
result is 

(J2x2(t) }/(~1 x2(t) ) ~ ~ o ( t -  1/2) (28) 

where again the noninteger exponent originates from various statistical 
averages introducing Bessel functions. Equation (28) results from the exact 
cancellation of all the t n (2~<n~<4) terms and thus demonstrates the 
desired result anticipated in Eq. (27). Note that the time decay of the 
relative fluctuation is the same for D and V. 

Let us now sum up our results: 
(i) For an infinite disordered lattice and for the directed walk 

[Eq. (2)], the transport coefficients V and D are sample-to-sample inde- 
pendent (self-averaging) quantities. Although this is an expected result on 
physical grounds (on large space and time scales, the particle, provided it 
obeys a normal dynamics, moves enough to properly experience the dis- 
order and average it), the explicit demonstration of this fact was lacking. 
Moreover, V and D are the same as those obtained for a periodized lattice 
in the limit of an infinite period. ~1) Otherwise stated, the two limits 
N ~ + ~  and t ~ + ~  actually commute. 

(ii) For the general hopping model [Eq. (1)], the same holds true 
for the velocity. We have shown that the disorder average of the diffusion 
constant D coincides with the result of ref. 1. It remains to be shown that, 
in this general case also, D is devoid of sample-to-sample fluctuations. This 
is indeed expected on physical grounds, since, most likely, a generalized 
form of the central limit theorem should hold for a given sample with a 
limiting form of the distribution of the position independent of the specific 
sample (and which is a standard Gaussian law when D and V both exist). 
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